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The equations with exponential coefficients and with stationary delays 

[lags] in the argument that are considered here, are frequently met in 

engineering problems. The present investigation is carried out by a 

method which is a generalization of the one used by the author previously 

[I]. The problem is reduced to the study of the Laplace transform [21 of 

the solution of a system of differential equations. This solution is ob- 

tained in an asymptotic form for large values of the argument. 

The method presented makes it possible to construct a particular solu- 

tion satisfying certain initial conditions. The construction of the solu- 

tion of the system of linear equations in the neighborhood of a regular 

singular point differs from Frobenius’ method in a way similar to the one 

in which Yuler’s method, for the solution of linear differential equa- 

tions with constant coefficients, differs from the solution of these 

equations by the use of the Laplace transform [z]. 

1. The following system of linear differential equations, with ex- 

ponential coefficients and stationary delays in the argument, is con- 

sidered 

(1.1) 
*=o 

Here, Y(t) is an m-dimensional vector, A 
9” 

are complex m x m rtlatrices 

satisfying the conditions 
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A,, E E, (1.2) 

where E is the identity matrix. 'Ihe symbol 1.11 denotes the norm of the 

matrix 

The elements aqk(fi) of the matrix A k(8) = 

of bounded variatSllon on [-h, O], (h >Q 0) \[3] 
II a .qkw II m are functions 
. ‘I% number'I in (1.1) is 

= m will be considered usually assumed to he finite. The case when 1 

separately. !lere we shall assume that 

(1.4) 

(k=O,l,... , n-l; s, i-l,.. bn) 

The differential in front of the matrices ‘4 

integrals [3, p.2771. 

qk (6) in (1.1) are Stieltjes 

'Ihe complex numbers a9 satisfy the following conditions 

a, Go= 0, Re as),0 (q = 1, 2, . , I) (1.5) 

Among the numbers 11~ a there can be rationally noncomnensurate 

numbers. Suppose that the'transform of the vector 0(t) (t > 0) is a mero- 

morphic vector Q(p) whose components are regular and bounded when Re p > 

b = const. 

In a particular case we shall assume that 

0((t) = i; CjtYjFjt, Q (p) = i CjYj!(p-Uo,)-"j--l (1.6) 
.; =I j=l 

where Cj are constant complex vectors, vi are non-negative integers, and 

the o. are complex numbers. With t > 0, we shall seek the system's (1.1) 

solut!on Y(t) satisfying the initial conditions 

Y(t) = Yf’ (l), . . . , s = Yy) (t), t E L--h, 01 (1.7) 

where the vectors YO(j) (j = 0, 1, . . . . n - 1) satisfy Dirichlet's con- 

dition when t E [-h, O]. We assume that the vectors Y(t), . . . . 

cl”-‘Y(t)/&“- l are continuous from the right at the point t = 0. 

’ In this section there is constructed a system of linear difference I. 
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equations for the image F(p) of the solution Y(t). The solution of 

system of linear difference equations is obtained in the form of a 
this 

series 
of matrices. 'Ihe relationship between the image F(p) and the original 

function Y(t) will be denoted by a small arrow as follows 

1' (t) +F (P), F (p) = f Y (t) e--pt dt (2.1) 
n 

Multiplying the system (1.1) by e-pt and integrating with respect to 

t from 0 to m, we obtain for F(p) the system of linear difference equa- 

tion [l] 

Here 

22 L, (P -I- 4 F (P + aq) = R (p) 
4=0 

(2.2) 

n-1 0 

J&(P)= Aqnpn f- (q =o, 1,. . , 1) (2.3) 

R (P> = Q (P> + 2 yq (P + 4 (C is given in (1.6)) (2.4) 

q=o 

y,(y) = A4"%s Y$'(())pn-j-l+ ni2 ni1 { ePs dAqk (6) y$'(())pk-j-l- 

j=o j=O k=j+l -h 

n--l 0 0 

- 

23 ss 
ep (e--t) dAqk (I?) Yhk’ (t) dt (2.5) 

B=n -h 1 

The elements of the known matrices L (p) are entire functions of p 

which satisfy the following condition ur&formly in Tm p 

lim jj I L2 W Lq (P + aq) I< P < 1 f Rep>b = cons1 (2.6) 
P+w 

q-=1 

'Ihis is implied by (1.2). 

llere R(p) is a known vector, and we have, in view of (2.~1), 

lim 1 LF1 (p) R (p) 1 = 0, Rep - + oc P-7) 

Making use of (2.3) and ( 2.1) we introduce the notation 

K,(p) = - L?(P)-%(P + xq)t Q(P) = L?(P) H(P) (2.8) 

If the system of ciifference equations (2.3) is multiplied by :J0-'(p) 
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and solved for F(p) one obtains 

W)=i WP)WP+%)+Q(P) 
q=1 

(2.9) 

@hen Re p > b,, where b, is sufficiently large, the relation (2.9) can 
be considered as a contraction mapping E3, p.441 of the space of bounded 
regular (when Re p > b,) vector functions. The metric in this space is 
defined as 

where the f,.(p) are the components of the vector Fs(p) (s = 1, 2). The 
system’s (2.4) 1 so ution F(p), which is bounded for sufficiently large 
k p > b,, is unique and can be obtained by the method of successive 
approximations t3, p.45) . !Ye have 

(2.12) 

Fo (P) = 0, F~+I (P) s $J Kq (p) Fj (P Jr 6) + Q (P) (i=O,i,2, . ..) 
(I=1 

The sequence of functions Fj(p) converges uniformly to the vector 

F(p), which is regular when Re p > 6,) because 

From (2.11) we obtain the following expression for F(p) 
(2.13) 

F(P) = Q(P) -I- $j x &I (P) K,, (P -t h7,) &a (P + %, + %J * * * 
0=1 qj=1, 2, . . . , I 

. . . Kq, (P -I- Rq, + an* + * * * + %,_J Q (P -I- Q, + %2 $- * . * + a,“) 

3. flegular case a0 z 0, Re a > 0 (“I = 1, . . . . I). In &is case the 

system (1.1) is especially simp e. 9 Let us consider the equation which we 
shall call the generating one of (3.3) 

Det L, (p) = 0 (3.1,! 

We denote its roots by pO, pl, pz, . . . . pk, . . . and introduce into our 
consideration the numbers pk where 

0' kl, . . . . k,' 

PI;,, [s,,....I;~= PI;,- k,a,-h_2x?-. . . - /<l&t (1~~ z 0% I, 2, ..a ; g=(3, I,... ,1) (3.2) 

Yext we designate by Z, the multiply-connected region of the coinpl.ex 
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plane p defined by the inequality 

(P--k.,k,,...,klI),&>O (“Q = 0, 1, 2, . . . , q = 0, 1, . . . ( I) (3.3) 

If p E t, and Re p > b, = const, then it follows from (2.12) and (2.6) 

that the series (2.13) converges absolutely and uniformly. From (3.1) and 

(2.8) it follows that the poles of the terms of (2.13) can lie only at 

the points pk k 
0’ 1’ ‘**I kl 

of (3.2) and must be of finite order. Let us 

consider the vector function 

Hj (PI = J’i (P) (P - ho, L . . . , kl )’ 

where r is a sufficiently large integer. 

(3.4) 

When E > 0 is smell enough, the vector Rj(p) is regular in the circle 

Cs 1 P - Pk kl . . $1 < &, and the sequence Hj(p) converges on the 

boundary o!’ the’circie C, uniformly. Ry Keierstrass’ theorem, the 

sequence Il.(p) converges uniformly inside the circle C,, and the coeffi- 

cients of + aylor’s expansion’ of Hi(p) at the point, p = pk 
kl, . . . . kl 

converge to definite finite values. \‘Je have thus establish:; the follow- 

ing theorem. 

Theorem 3.2. Suppose that in the system (1.1) a0 E 0, Se a > 0 

(‘I = 1, . . . . 11, and 0,(t) z 0. In this case the Laplace transform F(p) 

of Y(t), given by (2.11, is representable in the form of the series 

(2.13). The meromorphic vector *v(p) can have poles, of finite multi- 

plicity, Only at the points pk determined by (3.2). The co- 
0’ kl, ...I kl 

efficients of Laurent’s expansion of F(p) at the points I: = pk k 0’ I#“‘., kl 
converge to the corresponding coefficients of the expansion of the vector 

F(p). 

‘Ihe last assertion of 7lleorem 3.1 permits one to obtain the expansion 

of Y(t) as an asymptotic series for large values of t 

Y(t)- 5 res cF (P) ep’) IP=Pko, k,, ,,, , kl 
(3.5j 

k,, k,, , kl =CI 

From the properties of the Laplace transform Dl ) we now obtain the 

following asymptotic result 

Y(t)- Ix T’s cF (p) ep’) IP’Pk,, h’,, ,,, , ki e--bt + ’ (3.6) 

Re pk,, k,, . . . , kl >t~ 
1+co 

‘IIeorem (3.1) and property (3.5) imply the next theorem. 
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Theorem 3.2. Suppose that in the system (1.1) 

a0 E 0 , Rea,>O (q=1, . . . . I) 

Then we have the following results: 

(1) The solutions of the system (1.1) are asymptotically stable if 

Re pk < 0 (k = 0, 1, . ..). 

(2) 

for at 

(3) 
system 

The solutions of the system (1.1) are not stable if Re pk > 0 
0 

least one pk 
0 

Suppose that Re pk < 0 (k = 0, 1, 2, . ..). ?he solutions of the 

(1.1) will be stable if and only if the elements of the matrix 

L,'(p) (2.3) have simple poles for all roots pk lying on the imaginary 

axis. 

lhe conclusions of Theorem 3.2 can be reformulated in the following 

way. 

Theorem 3.3. Suppose that in the system of Equations (1.1) a0 E 0, 

Re a9 > 0 (q = 1, . . . . 1 ), and Q(t) e 0. In order that all solutions of 
the system (1.1) may be stable, it is necessary and sufficient that all 

solutions of the abbrev ated system of (l.l), that is, of 

A d”Y (1) 
on - 

dt” 
(3-V 

be stable. 

Note 3.1. If one considers the solutions of the system (1.1) and 

(3.7) with the initial conditions (1.7), then one can distinguish between 

their behaviors at infinity, when t + + 0~. For example, the solution of 
the system (1.1) will tend to zero while the solution of the system of 

Equations (3.7), with the same initial conditions, will be unbounded. 

Note 3.2. In the 'Iheorems 3.2 and 3.3 the main assertions follow 

already from known results (see, for example, [4] ). 

If 0(t) in (1.1) has the form (1.6), then it follows from (2.13), 

(2.8), (2.4) and (1.6) that the 

at the points 

ll'j, k,. . . . , k[ = mj - k,a, - &.a, - 

Example 3.1. Let us consider 

vector F(,o) will have additional poles 

..- klal (j=i,..., L k, = 0, 1,2, . ..) 

(3.8) 

the differential equation 
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dy (t) 
--Jj- + ay (t) + be-‘y (t - z) = 0, Y(0) = 1, y(t) Ez 0 (t < 0) (3.9) 

By (2.3) and (2.4) we have 

L (PI = P + a, Lq (p) = be-PT, R (P) = 1 (3.10) 

For the image f(p) of the solution y(t) of the Equation (3. s), we ob- 

tain 

f (p) = (p + a)+ - be(++‘) T (p + a)+ f (p + 1) (3.11) 

The series (2.13) takes on the form 

f(P)=*- 
be-(P+l) T 

rP+4w-a+~)+ 
&-@P-3) = 

(p+a)(p+a+l)(P+a+2) -I-.‘. (3.12) 

From (3.12) we obtain the asymptotic expansion (3.5) 

y (t) N e--at 
i 

her (a-1) 
1 - ~ 

6~5 @Se) 

I! + 21 -...+(--)n 
bneT (na--n @+I) / 2) 

nl 
+... :-< 

‘i 

i\ 

be+ (-O) 
-t L 

b2,r (1--%a) 

x I+Te 2r e-2! + . . . + 

bne’ (n (n-1) f 2--nU) 

nf 
ePt +... 

1 
(3.13) 

Example 3.2. Let us find the asymptotic expansion (3.5) of the solu- 

tion y(t) of the equation 

dy/dt+ y (I - TC) e-* = 0, y(t) = sin t, tE I---n, 01 (3.24) 

For the image f(p) of the solution y(t) we now have the difference 

equation 

f(P) = (e-x (Pfl) + 1) [(p + 1)2 + I] pi-’ - p-‘e-’ O’+l) f (p + 1) (3.15! 

From Formulas (2.13) and (3.5) we obtain the expansion 

1 + e+ (1 + e-s%) e-” (1 _t ,-7Xx ) e-n (n-1)x i 2 > 

y(t)- (IflZ)- (1$-22)1! +.‘.+(--l)“fl (1+n2)(n-11)! :Y... % 
! 

X l+ebL -\-$-e-2r +-$- 
i 

e-3t 4 ..+ 

en(n-l) x/2 

. 
n! 

e--nt -f- . . (3.16) 

The series (3.16), as well as the series (3.13), diverges for all 

values of t, but it describes very well the asymptotic behavior of y(t) 

when t - a. For example, if we take the first five terms of the series 

in the first set of parentheses in (3. 16). then we obtain the limiting 

value y( +m) with an accuracy of up to 10 
-22 

, By making use of another 

grouping in finding the original function, one can show that the 
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corresponding series for y{ t) converges for all finite values of t. Thus, 

if one is seeking the original y(f) in Example 3.1 in the form of a power 

series in 6, then one obtains the usual solution, and the expansion will 

converge for all finite values of t. 

4. In order to explain the term “regular case” we note that the prob- 

lem of the construction of the solution of a system of linear differ- 

ential equations in the neighborhood of a regular singular point is 

usually reduced, by means of a simple substitution, to the regular system 

(1.1) but without a delay in the argument [Il. The methoa which was pro- 

posed in Section 3 is one of the most cenvenient ones for the construc- 

tion of the solution of a system of linear differential equations in the 

neighborhood of a regular singular point. This is especially so for the 

various critical cases. 

Example 4.1. Let us find the fundamental normalized matrix of the 

solutions of a system of differential equations (which is frequently met 

in control problems) 

z dZ/dx== (.A - zB) Z (cc), 2 (1) = E, xE 11, 0) (4.1) 

in the neighborhood of a regular singular point x = 0. A change of vari- 
-t ables with the aid of the formulas x = e , Z(Z) p Y(f) = Y( -In r), 

leads to the system of equations 

dY,Mt + AY (t) = e-{ BY (t), Y (0) = E, t E 10, 00) (4.2) 

The system of difference equations (2.2) takes on the form 

De obtain its solution in the form 

F (PII = (EP + 4-’ -t WP 4- A)-- (E (P -I- 1) + 4-l + 

+ (Ep + A)-‘B (E (p +- 1) + A)9 (E (p -!- 2) + A)-’ + . . . (4.4) 

Let us denote by pl, pq, . . . , p, the roots of the equation Det (Ep + 

A) = 0, and let us consider the most simple case when 

P: -p/,+k (i? II -7i,“.,...,?n; i#h; k=O, *i, *2,...1 (4 LJJ 

Suppose that we have the simplest tyep of partial fractions expansion 

(Ep + 4-l = Cl (P -Id- -t- c2 (P - pz)-’ + . . . + c, iP - &J-l (4.1:: 

Be shall denote the noncommutative product of matrices in the usual 
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[I A, = n,, A% . . . , A, 
k-1 

We can find the original Y(t) with the aid of 

the change of variables, we obtain 

(4.7) 

(3.5). and recalling 

Z(x) = 5 j=: x-j k + 5 2 fi [(Q- k + 1 + s) + ‘WI} cj x 
k-l S=l 

x {E + s ir [B (E (Pj + s) -t WI} 
k=1 s=l 

(4.5) 

Example 4.2. Let us find the solution, when x E [l, o), of a differ- 

ential equation which has a regular singular point at x = 0 

z (1) = ll (4.9) 

By means of the change of variables x = ,-*, t E LO, m), Z(X) S y(t), we 

obtain 

d2!/ (t) -__ - ,--1 y (t) = 0, 
dt2 y (0) = 0, g (0) = 1 (4.10) 

The difference equation (2.2) and its solution (2.13) have the forms 

1 
P’f(P)=l+j(p+‘), f(P)=~+p”,p_tl)t+ p’(pi_1~(171~+“’ (4.12) 

Here we have the critical case for the differential equation (4. lo), 

when the image has a pole of order higher than the first. We are looking 

for the original by the usual rules, determining the principal part of 

the expansion of f(p) in terms of the poles p = 0, -1, -2, . . . Introduc- 

ing two constants a and b, we obtain the solution in the form of the 

series 
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